91 research outputs found

    Remarks by David F. Cavers to Duke Students Converning the Origin of and Vision for Law and Contemporary Problems

    Get PDF
    Objectives To present a method for generating reference maps of typical brain characteristics of groups of subjects using a novel combination of rapid quantitative Magnetic Resonance Imaging (qMRI) and brain normalization. The reference maps can be used to detect significant tissue differences in patients, both locally and globally. Materials and Methods A rapid qMRI method was used to obtain the longitudinal relaxation rate (R1), the transverse relaxation rate (R2) and the proton density (PD). These three tissue properties were measured in the brains of 32 healthy subjects and in one patient diagnosed with Multiple Sclerosis (MS). The maps were normalized to a standard brain template using a linear affine registration. The differences of the mean value ofR1, R2 and PD of 31 healthy subjects in comparison to the oldest healthy subject and in comparison to an MS patient were calculated. Larger anatomical structures were characterized using a standard atlas. The vector sum of the normalized differences was used to show significant tissue differences. Results The coefficient of variation of the reference maps was high at the edges of the brain and the ventricles, moderate in the cortical grey matter and low in white matter and the deep grey matter structures. The elderly subject mainly showed significantly lower R1 and R2 and higher PD values along all sulci. The MS patient showed significantly lower R1 and R2 and higher PD values at the edges of the ventricular system as well as throughout the periventricular white matter, at the internal and external capsules and at each of the MS lesions. Conclusion Brain normalization of rapid qMRI is a promising new method to generate reference maps of typical brain characteristics and to automatically detect deviating tissue properties in the brain

    Overregulation of Health Care: Musings on Disruptive Innovation Theory

    Get PDF
    Disruptive innovation theory provides one lens through which to describe how regulations may stifle innovation and increase costs. Basing their discussion on this theory, Curtis and Schulman consider some of the effects that regulatory controls may have on innovation in the health sector

    Основы самостоятельной профессионально-прикладной физической подготовки студентов медицинских вузов

    Get PDF
    ВГМУЛЕЧЕБНАЯ ФИЗКУЛЬТУРАФИЗИЧЕСКАЯ КУЛЬТУРА ЛЕЧЕБНАЯФИЗИЧЕСКАЯ ПОДГОТОВКАРассматриваются вопросы для самостоятельного изучения основ профессионально-прикладной физической подготовки будущих работников в сфере медицинского обслуживания населения

    The Non-Invasive Brain Biopsy : Implementation and Application of Quantitative Magnetic Resonance Spectroscopy on Healthy and Diseased Human Brain

    No full text
    Introduction: In this thesis, one of the major objectives was to implement a method for (absolute) quantitative magnetic resonance spectroscopy (qMRS) of the human brain, intended for clinical use. The implemented method was based on standard spatially selective MRS sequences. The tissue water was used as an internal reference, which was calibrated using whole brain quantitative magnetic resonance imaging (qMRI). The second objective was to apply the method in clinical neuroimaging investigation, of different disease processes in the human brain. Materials and Methods: In total, 158 subjects were included and 507 MRS measurements (330 in white matter and 177 in the thalamus) were acquired. In a cross-sectional study of multiple sclerosis (MS), 35 ‘clinically definite MS’ (CDMS) patients were included, of which 15 were atypical CDMS patients with a very low number of white matter lesions (two or fewer), and 20 were typical CDMS patients with white matter lesions (three or more) were included. The metabolite concentrations in normal appearing white matter (NAWM) and the thalamus were assessed using the qMRS method developed in this thesis, and the brain parenchymal fraction (BPF) was calculated from the qMRI data. A cohort of 27 CDMS patients were then treated with Natalizumab and examined both at baseline, and after one year of treatment. Both qMRS and CSF samples for the purpose of assessing intrathecal inflammation were obtained. In addition, the frontal deep white matter (FDWM) and the thalamus were investigated in 20 idiopathic normal pressure hydrocephalus (iNPH) patients using qMRS. Finally, the left thalamus of 14 Kleine-Levin Syndrome (KLS) patients were examined using both qMRS and functional MRI (fMRI) of neurological activation of the left thalamus during a working memory test. Moreover, 63 healthy subjects were included as controls for this work. Results: A quantitative MRS method based on water referencing was successfully developed, implemented, and evaluated at 1.5 T. Both healthy subjects and MS patients showed a positive correlation between the concentrations of total Creatine (tCr) and myo Inositol (mIns) and age, and also a negative correlation with BPF were observed. Glutamate and Glutamine (Glx) levels were elevated for all MS patient groups compared to healthy controls. In contrast, lower concentrations of total N-acetyl aspartate and N-acetyl aspartate glutamate (tNA) and higher mIns concentrations in NAWM were only observed in MS patients that had developed white matter lesions. Moreover, the change in concentrations of tCr and total Choline (tCho) in MS patients during Natalizumab-treatment were positively correlated with markers of intrathecal inflammation. The iNPH patients had lower tNA and N-acetyl aspartate (NAA) concentrations in the thalamus compared to the controls. In addition, the NAA concentrations in the left thalamus were inversely correlated to the fMRI activation in the left thalamus during the working memory test in KLS patients. Discussion: The calculated calibration factors were in good agreement with the results found in the literature, indicating that the calibration factors were accurate. The observed elevated Glx concentration in MS could be due to increased concentrations of glutamate (Glu), which is neurotoxic at high concentrations, thus the elevated Glx could be linked to the clinically observed neurodegeneration in MS both in patients that have developed lesions and in atypical patients that do not develop any (or extremely few) lesions. Both tCr and mIns can be used as glia markers, thus the correlations of tCr and mIns concentrations with both age and BPF indicates that the local glia cell density, or tissue fraction, increases with age and atrophy. Moreover, the higher mIns concentrations in the NAWM of MS patients with a substantial white matter lesion load indicate that the glia tissue amount in NAWM is increased in MS patients that develop lesions. NAA is neuronal-specific, thus the lower tNA concentrations indicate that the neurone concentration is lower in the NAWM of MS patients that develop MS lesions. The lack of correlation between tNA with age and BPF in combination with the presence of correlation between tCr and mIns with both age and BPF, might be explained using a model for neurodegeneration. In which, there is a higher neurone loss compared to the glia loss. However, the lost tissue is compensated by compression of the tissue, which keeps the density of neurones more or less constant and the density of glia increased. The low concentration levels of the neuronal marker NAA in the thalamus of the iNPH patients indicates that the basal ganglia-thalamic-subcortical frontal circuits are damage or at least strongly modulated in the thalamus. The correlation between strong activation in left thalamus during a working memory test with the neuronal marker NAA indicate that the KLS patients that have low neuronal concentration also needed to utilise the working memory circuitry more heavily in order to perform the task as healthy subjects. Conclusion: It is possible to use qMRI for accurate and robust determination of qMRS in clinical practice, even at 1.5 T field strength. The tGlx concentration may be an important marker for pathology in the nonlesional white matter of MS-patients. The increased glia and loss of neurones in the NAWM are associated with the formation of white matter lesions

    The Non-Invasive Brain Biopsy : Implementation and Application of Quantitative Magnetic Resonance Spectroscopy on Healthy and Diseased Human Brain

    No full text
    Introduction: In this thesis, one of the major objectives was to implement a method for (absolute) quantitative magnetic resonance spectroscopy (qMRS) of the human brain, intended for clinical use. The implemented method was based on standard spatially selective MRS sequences. The tissue water was used as an internal reference, which was calibrated using whole brain quantitative magnetic resonance imaging (qMRI). The second objective was to apply the method in clinical neuroimaging investigation, of different disease processes in the human brain. Materials and Methods: In total, 158 subjects were included and 507 MRS measurements (330 in white matter and 177 in the thalamus) were acquired. In a cross-sectional study of multiple sclerosis (MS), 35 ‘clinically definite MS’ (CDMS) patients were included, of which 15 were atypical CDMS patients with a very low number of white matter lesions (two or fewer), and 20 were typical CDMS patients with white matter lesions (three or more) were included. The metabolite concentrations in normal appearing white matter (NAWM) and the thalamus were assessed using the qMRS method developed in this thesis, and the brain parenchymal fraction (BPF) was calculated from the qMRI data. A cohort of 27 CDMS patients were then treated with Natalizumab and examined both at baseline, and after one year of treatment. Both qMRS and CSF samples for the purpose of assessing intrathecal inflammation were obtained. In addition, the frontal deep white matter (FDWM) and the thalamus were investigated in 20 idiopathic normal pressure hydrocephalus (iNPH) patients using qMRS. Finally, the left thalamus of 14 Kleine-Levin Syndrome (KLS) patients were examined using both qMRS and functional MRI (fMRI) of neurological activation of the left thalamus during a working memory test. Moreover, 63 healthy subjects were included as controls for this work. Results: A quantitative MRS method based on water referencing was successfully developed, implemented, and evaluated at 1.5 T. Both healthy subjects and MS patients showed a positive correlation between the concentrations of total Creatine (tCr) and myo Inositol (mIns) and age, and also a negative correlation with BPF were observed. Glutamate and Glutamine (Glx) levels were elevated for all MS patient groups compared to healthy controls. In contrast, lower concentrations of total N-acetyl aspartate and N-acetyl aspartate glutamate (tNA) and higher mIns concentrations in NAWM were only observed in MS patients that had developed white matter lesions. Moreover, the change in concentrations of tCr and total Choline (tCho) in MS patients during Natalizumab-treatment were positively correlated with markers of intrathecal inflammation. The iNPH patients had lower tNA and N-acetyl aspartate (NAA) concentrations in the thalamus compared to the controls. In addition, the NAA concentrations in the left thalamus were inversely correlated to the fMRI activation in the left thalamus during the working memory test in KLS patients. Discussion: The calculated calibration factors were in good agreement with the results found in the literature, indicating that the calibration factors were accurate. The observed elevated Glx concentration in MS could be due to increased concentrations of glutamate (Glu), which is neurotoxic at high concentrations, thus the elevated Glx could be linked to the clinically observed neurodegeneration in MS both in patients that have developed lesions and in atypical patients that do not develop any (or extremely few) lesions. Both tCr and mIns can be used as glia markers, thus the correlations of tCr and mIns concentrations with both age and BPF indicates that the local glia cell density, or tissue fraction, increases with age and atrophy. Moreover, the higher mIns concentrations in the NAWM of MS patients with a substantial white matter lesion load indicate that the glia tissue amount in NAWM is increased in MS patients that develop lesions. NAA is neuronal-specific, thus the lower tNA concentrations indicate that the neurone concentration is lower in the NAWM of MS patients that develop MS lesions. The lack of correlation between tNA with age and BPF in combination with the presence of correlation between tCr and mIns with both age and BPF, might be explained using a model for neurodegeneration. In which, there is a higher neurone loss compared to the glia loss. However, the lost tissue is compensated by compression of the tissue, which keeps the density of neurones more or less constant and the density of glia increased. The low concentration levels of the neuronal marker NAA in the thalamus of the iNPH patients indicates that the basal ganglia-thalamic-subcortical frontal circuits are damage or at least strongly modulated in the thalamus. The correlation between strong activation in left thalamus during a working memory test with the neuronal marker NAA indicate that the KLS patients that have low neuronal concentration also needed to utilise the working memory circuitry more heavily in order to perform the task as healthy subjects. Conclusion: It is possible to use qMRI for accurate and robust determination of qMRS in clinical practice, even at 1.5 T field strength. The tGlx concentration may be an important marker for pathology in the nonlesional white matter of MS-patients. The increased glia and loss of neurones in the NAWM are associated with the formation of white matter lesions

    The Non-Invasive Brain Biopsy : Implementation and Application of Quantitative Magnetic Resonance Spectroscopy on Healthy and Diseased Human Brain

    No full text
    Introduction: In this thesis, one of the major objectives was to implement a method for (absolute) quantitative magnetic resonance spectroscopy (qMRS) of the human brain, intended for clinical use. The implemented method was based on standard spatially selective MRS sequences. The tissue water was used as an internal reference, which was calibrated using whole brain quantitative magnetic resonance imaging (qMRI). The second objective was to apply the method in clinical neuroimaging investigation, of different disease processes in the human brain. Materials and Methods: In total, 158 subjects were included and 507 MRS measurements (330 in white matter and 177 in the thalamus) were acquired. In a cross-sectional study of multiple sclerosis (MS), 35 ‘clinically definite MS’ (CDMS) patients were included, of which 15 were atypical CDMS patients with a very low number of white matter lesions (two or fewer), and 20 were typical CDMS patients with white matter lesions (three or more) were included. The metabolite concentrations in normal appearing white matter (NAWM) and the thalamus were assessed using the qMRS method developed in this thesis, and the brain parenchymal fraction (BPF) was calculated from the qMRI data. A cohort of 27 CDMS patients were then treated with Natalizumab and examined both at baseline, and after one year of treatment. Both qMRS and CSF samples for the purpose of assessing intrathecal inflammation were obtained. In addition, the frontal deep white matter (FDWM) and the thalamus were investigated in 20 idiopathic normal pressure hydrocephalus (iNPH) patients using qMRS. Finally, the left thalamus of 14 Kleine-Levin Syndrome (KLS) patients were examined using both qMRS and functional MRI (fMRI) of neurological activation of the left thalamus during a working memory test. Moreover, 63 healthy subjects were included as controls for this work. Results: A quantitative MRS method based on water referencing was successfully developed, implemented, and evaluated at 1.5 T. Both healthy subjects and MS patients showed a positive correlation between the concentrations of total Creatine (tCr) and myo Inositol (mIns) and age, and also a negative correlation with BPF were observed. Glutamate and Glutamine (Glx) levels were elevated for all MS patient groups compared to healthy controls. In contrast, lower concentrations of total N-acetyl aspartate and N-acetyl aspartate glutamate (tNA) and higher mIns concentrations in NAWM were only observed in MS patients that had developed white matter lesions. Moreover, the change in concentrations of tCr and total Choline (tCho) in MS patients during Natalizumab-treatment were positively correlated with markers of intrathecal inflammation. The iNPH patients had lower tNA and N-acetyl aspartate (NAA) concentrations in the thalamus compared to the controls. In addition, the NAA concentrations in the left thalamus were inversely correlated to the fMRI activation in the left thalamus during the working memory test in KLS patients. Discussion: The calculated calibration factors were in good agreement with the results found in the literature, indicating that the calibration factors were accurate. The observed elevated Glx concentration in MS could be due to increased concentrations of glutamate (Glu), which is neurotoxic at high concentrations, thus the elevated Glx could be linked to the clinically observed neurodegeneration in MS both in patients that have developed lesions and in atypical patients that do not develop any (or extremely few) lesions. Both tCr and mIns can be used as glia markers, thus the correlations of tCr and mIns concentrations with both age and BPF indicates that the local glia cell density, or tissue fraction, increases with age and atrophy. Moreover, the higher mIns concentrations in the NAWM of MS patients with a substantial white matter lesion load indicate that the glia tissue amount in NAWM is increased in MS patients that develop lesions. NAA is neuronal-specific, thus the lower tNA concentrations indicate that the neurone concentration is lower in the NAWM of MS patients that develop MS lesions. The lack of correlation between tNA with age and BPF in combination with the presence of correlation between tCr and mIns with both age and BPF, might be explained using a model for neurodegeneration. In which, there is a higher neurone loss compared to the glia loss. However, the lost tissue is compensated by compression of the tissue, which keeps the density of neurones more or less constant and the density of glia increased. The low concentration levels of the neuronal marker NAA in the thalamus of the iNPH patients indicates that the basal ganglia-thalamic-subcortical frontal circuits are damage or at least strongly modulated in the thalamus. The correlation between strong activation in left thalamus during a working memory test with the neuronal marker NAA indicate that the KLS patients that have low neuronal concentration also needed to utilise the working memory circuitry more heavily in order to perform the task as healthy subjects. Conclusion: It is possible to use qMRI for accurate and robust determination of qMRS in clinical practice, even at 1.5 T field strength. The tGlx concentration may be an important marker for pathology in the nonlesional white matter of MS-patients. The increased glia and loss of neurones in the NAWM are associated with the formation of white matter lesions

    How does motion affect GABA-measurements? Order statistic filtering compared to conventional analysis of MEGA-PRESS MRS

    No full text
    Purpose The aim of this study was to evaluate two post-processing techniques applied to MRS MEGA-PRESS data influenced by motion-induced artifacts. In contrast to the conventional averaging technique, order statistic filtering (OSF) is a known method for artifact reduction. Therefore, this method may be suitable to incorporate in the GABA quantification. Methods Twelve healthy volunteers were scanned three times using a 3 T MR system. One measurement protocol consisted of two MEGA-PRESS measurements, one reference measurement and one measurement including head motions. The resulting datasets were analyzed with the standard averaging technique and with the OSF-technique in two schemes; filtering phase cycles RAW PC and filtering dynamics RAW Dyn. Results The datasets containing artifacts resulted in an underestimation of the concentrations. There was a trend for the OSF-technique to compensate for this reduction when quantifying SNR-intense signals. However, there was no indication that OSF improved the estimated GABA concentrations. Moreover, when only considering the reference measurements, the OSF technique was equally as effective as averaging, which suggests that the techniques are interchangeable. Conclusion OSF performed equally well as the conventional averaging technique for low-SNR signals. For high-SNR signals, OSF performed better and thus could be considered for routine usage.Funding Agencies|Knut and Alice Wallenberg Foundation [KAW 2013.0076]; NIH [P41 015909, R01 016089]</p

    Abstract

    No full text
    Paper I, III and IV have been reprinted with permission of the respective copyright holders

    Retrospective Artifact Elimination in MEGA-PRESS using a Correlation Approach

    No full text
    PurposeTo develop a method for retrospective artifact elimination of MRS data. This retrospective method was based on an approach that combines jackknife analyses with the correlation of spectral windows, and therefore termed “JKC.”MethodsTwelve healthy volunteers performed 3 separate measurement protocols using a 3T MR system. One protocol consisted of 2 cerebellar MEGA‐PRESS measurements: 1 reference and 1 measurement including head movements. One‐third of the artifact‐influenced datasets were treated as training data for the implementation the JKC method, and the rest were used for validation.ResultsThe implemented JKC method correctly characterized most of the validation data. Additionally, after elimination of the detected artifacts, the resulting concentrations were much closer to those computed for the reference datasets. Moreover, when the JKC method was applied to the reference data, the estimated concentrations were not affected, compared with standard averaging.ConclusionThe implemented JKC method can be applied without any extra cost to MRS data, regardless of whether the dataset has been contaminated by artifacts. Furthermore, the results indicate that the JKC method could be used as a quality control of a dataset, or as an indication of whether a shift in voxel placement has occurred during the measurement

    http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-97964 Brain Characterization Using Normalized Quantitative Magnetic Resonance Imaging

    No full text
    Objectives: To present a method for generating reference maps of typical brain characteristics of groups of subjects using a novel combination of rapid quantitative Magnetic Resonance Imaging (qMRI) and brain normalization. The reference maps can be used to detect significant tissue differences in patients, both locally and globally. Materials and Methods: A rapid qMRI method was used to obtain the longitudinal relaxation rate (R1), the transverse relaxation rate (R 2) and the proton density (PD). These three tissue properties were measured in the brains of 32 healthy subjects and in one patient diagnosed with Multiple Sclerosis (MS). The maps were normalized to a standard brain template using a linear affine registration. The differences of the mean value ofR1, R2 and PD of 31 healthy subjects in comparison to the oldest healthy subject and in comparison to an MS patient were calculated. Larger anatomical structures were characterized using a standard atlas. The vector sum of the normalized differences was used to show significant tissue differences
    corecore